Why
the Unix Philosoph vy

still matters

markus schnalke <meillo@marmaro.de>



Goals of this talk

Introduce the Unix Phil
Show that most modern software is crap
Explain why the Unix Phil leads to good/better software

Convince you that good software is of matter

Make you think



Roadmap

Background

What is the Unix Phil?

The Unix Phil after Gancarz
Real world examples

Final thoughts



Background



How | met the Unix Phil

First contact through dwm (suckless project)
“cat -v Considered Harmful”
“The Unix and the Echo”

“The Unix Programming Environment”

Better understanding through digging in the past



Historical background

The late 60s and early 70s
Operating systems are complex
Brooks’ “The Mythical Man-Month”
MULTICS had just failed

A lot of different hardware

Limited computing power

Textual input and output (line printers)



Everything is a file
Is the(?) basic concept in Unix (and even more in Plan9)

Made simple operating systems possible

It is not covered by the Unix Phil
The Unix Phil is on a different level

Unix is mainly two things:
* An operating system (system calls)

« A toolchest (coreutils)



What is the Unix Phil?



What is the Unix Phil *itself*?

“The Unix philosophy is a set of cultural norms and philo-
sophical approaches to developing software based on the
experience of leading developers of the Unix operating sys-
tem.” (wikipedia)

How the inventors of Unix write software.

Common things of classic Unix tools.

Difficult to define



Unix Phil vs. SW dev processes

The Unix Phil

 much: *what* to program

o few: *how* to program
Software developments processes:
» few: *what* to program

 much: *how* to program

Extreme Programming is like the Unix Phil but with more
*how* than *what*, and with formalisms



What is the Unix Phil?

Doug Mcllroy (1978)
Mike Gancarz: “The Unix Philosophy” (1994)
Eric S. Raymond: “The Art of Unix Programming” (2003)

Richard Gabriel: “Worse is Better” (1989)



Doug Mcllroy
This is the Unix philosophy:
* Write programs that do one thing and do it well.
» Write programs to work together.

* Write programs to handle text streams, because that is
a universal interface.



Mike Gancarz: “The Unix Philosophy”

« Small is beautiful.

 Make each program do one thing well.

* Build a prototype as soon as possible.

» Choose portability over efficiency.

« Store data in flat text files.

» Use software leverage to your advantage.

» Use shell scripts to increase leverage and portability.
» Avoid captive user interfaces.

 Make every program a filter.

Plus ten lesser tenets



The Unix Phil after Gancarz



Small is beautiful

Small software is easier to understand, write, maintain
Less lines of code contain less bugs

Monsters are large



Make each program do one thing well

Programs with many functions are large
One thing is easier to understand

Often straight forward to implement
Toolchests

Reusable



Build a prototype as soon as possible

Shows the quality of the design
Shows the problems of the software
The best way to shape a software
Users find bugs

Incremental development



Choose portability over efficiency

(Originates in a lot of incompatible hardware in history)
Use is most important
Availability

Only needs to be fast enough



Store data in flat text files

(originally: “Store numerical data in flat ASCII files”)
Binary data is machine-dependent

Human readable data is:

» As generic as possible

» Is very likely supported

 Many tools work on it (Unix toolchest)

» Directly editable by humans

Processing needs only to be fast enough



Use software leverage to your advantage
What do we have computers for?
Make best use of computing power
Reduce development effort

Toolchests and a powerful shell



Use shell scripts to increase leverage and portability

Was very important in history
High level languages
Prototyping

Quick hacks

Users are “programmers”



Avoid captive user interfaces

Don’t assume the user to be human
Exclude the user whenever possible
Automate

How does it scale?

Bloat



Make every program a filter

Programs transform data
Combine programs
Have one common interface

Toolchests



real world e xamples



find -printf

How to reformat the output of find(1) to have “FILENAME
PATH” instead of “PATH/FILENAME"?

The “easy” way: find /dir -printf "%P %h\n"

The “good” way:
find /dir | sed 's\(.:*\)\(.*),\2 \1,

The difference shows off when one wants, for instance, the
path to be manipulated further.

Source (in German):
http://debianforum.de/forum/viewtopic.php?t=117683



Various

Who uses grep -R ?

cat -v

Pagers are taken for granted

What about the readline?



MH / nmh
A Mail User Agent (MUA)
Is a toolchest
Work with mails like with generic files
The only(?) MUA that follows the Unix Phil

Has a very special feeling



uzbl

A web browser that adheres to the Unix Phil
A young project (about 1 year)

Central question:
What is the one task a web browser covers?

Makes very visible use of software leverage

Suffers hard from our broken web



Final thoughts



Say no

In today’s computer world, following the Unix Phil means
often asceticism

One needs to abjure a lot of “nice” features
Actually, it is abjuring the *bad* features

Leads to a valuable attitude, IMO

Transfer it to your everyday life



Avoid complexity

Avoid complexity first and foremost

Complexity is the “boss enemy”, software developers fight
against

Strive for simplicity, clarity, generality

Transfer it to your everyday life



Good solutions

We don’t need just solutions, we need good ones

Today, we can make almost everything possible, but we still
cannot make it good

Transfer it to your everyday life



Live it
The Unix Phil is more than just a few guidelines

You cannot follow only some of the tenets

To understand the Unix Phil, you need to engage with it

It's a philosoph y — live it!



References



Literature

“The Unix Philosoph y” by Mike Gancarz
Go and get it!

“The Unix Programming En vironment " by Kernighan
and Pike
A Bible for Unix-lovers.

“The Mythical Man-Month ” and “No Silver Bullet ” by
Fred Brooks
About complexity in software development.

“The Practice of Pr ogramming " by Kernighan and Pike
How good code should look like.

“cat -v Considered Harmful ” by Pike and Kernighan
http://harmful.cat-v.org/cat-v/
A must-read.



This talk was prepared using tools of the Heirloom project:
http://heirloom.sf.net

The slides macros are based on
http://repo.cat-v.org/troff-slider/

The slides are available on my website
http://marmaro.de/docs and on
http://ulm.ccc.de/ChaosSeminar/

See my paper on the topic, too.

2010-03-08



