Old Software Treasuries

markus schnalke <meillo@marmaro.de>

this talk

« show the historical background
* introduce, explain and demonstrate ed, sed, awk

« solve real life problems

please interrupt me at any time in case of questions

please tell me what | should demonstrate

goal: motivate you to learn and use these programs

old software treasuries

older than | am
standardized

various implementations
freely available

good software

origin
e classic Unix tools

 from Bell Labs

* representations of the Unix Philosophy

historical background

1968:
« MULTICS fails

« the last people working on it were Thompson, Ritchie,

Mcllroy, Ossanna
1969:
« they still think about operating systems
» pushing idea: a file system (mainly Thompson)

e in search for hardware: a rarely used PDP-7

historical background

1970:

» Kernighan suggests “Unix”

 deal: a PDP-11 for a document preparation system
1973:

e rewrite of Unix in C

1974:

» first publication

computer hardware back then

computers are as large as closets
users work on terminals
terminals are: a keyboard and a line printer

line printers have a speed of 10-15 chars/s

<picture of PDP-11>

impact on software
 don’t waste characters
* be quiet

* nothing like “screen-orientation”

ed

ed

by Ken Thompson in early 70s, based on ged
the Unix text editor

the standard text editor!

Unix was written with ed

first implementation of Regular Expressions

ed: old-fashioned

already old-fashioned in 1984

“So why are we spending time on such a old-fashioned
program?”

“Although many readers will prefer some other editor for

daily use, ed is universally available, efficient and effec-

tive.”

ed: reasons

« the standard (text editor)

« available as /bin/ed

* line oriented — works on any terminal
* needs few bandwidth

» good for automated editing (scripts)

e good for presentations (?)

it's not so much about using it, but about knowing it

ed: overview
usage: ed [-s] [file]
commands: [al[,a2]] cmd [params]
default addresses, default params
success — no feedback
problems - “?”

about 30 commands, half of them important

ed: commands

insert p print

append n print with line number
change I list characters

delete e editfile

move w write file

transfer (copy) g quit

substitute
undo

global command

/IRE/
?RE?

1%
- [foo/

ed: addresses

4th line
last line

current line

next line (.+1)

the same as .-2

next line matching RE

previous line matching RE

all lines

from previous line to next /foo/

<ed demo>

ed: derived software

grep

ed

ex

Vi

sed

sed

sed

by Lee McMahon in 1973

“stream editor”

started as a one-night hack on ed (AFAIR)
makes ed suitable for pipeline processing

irony: today, people use sed -i for in-place editing

sed: differences to ed

line processing cycle

no forward/backward references
hold space (g,Gh,H,x)

labels and branches

bad i and a syntax

<sed demo>

awk

awk

by Aho, Weinberger, Kernighan

oawk in 1977, nawk in 1985

name is abbreviation of surnames (but also “awkward”)
the second scripting language on Unix (besides sh)

“sed meets C”

awk: purpose

» for text processing
e avoids complex constructs in sh

« floating point arithmetic

awk: usage

awk ‘'commands’ <in >out

awk -f cmdfile <in >out

program flow like in sed

input automatically split in records and fields

program is a list of blocks: cond { commands }

awk: features

variables, assoc arrays
functions

pattern matching (ERES)
dynamic typing

more high-level: no pointers

awk: statements

much like C

if , but no switch-case

while , do-while

for (;;) {} like in C

for (i in array) {} foreach
break , continue , exit , return

print and printf are statements! redirection possi-

ble with >, >>, |

arithmetic
/O

string

awk: functions

much like in C
getline(), system()

sub(), gsub()

substr(), index(), match(),
split(), sprintf()

tolower(), toupper(),
length(), int()

awk: variables

RS, FS record/field separator
NR number of current record
NF number of fields ($1 ... SNF)

ARGC, ARGV likein C

FILENAME name of current input file
OFMT output format for numbers
ORS, OFS output record/field separator
SUBSEP a[l1,2] equals a1 SUBSEP 2]

awk: conditions

examples:

e NR==1{.}

« NR==1,NR==5{.}
« /RE/{.}

« $1 == "string" {...}

« $17/RE/{.}

- BEGIN{.}

- END{.}

<awk demo>

real life e xamples

literature
“The Unix Programming En vironment " by Kernighan
and Pike is highly recommended to support this talk
it's one of my favorite computer books

you really should read it!

“SED & AWK g e-packt ” by Stephan Thesing

if you want a german book about sed and awk then get

this one

you can get it for about 3 Euro

this talk was prepared using tools of the Heirloom project:

http://heirloom.sf.net

the slides macros were taken from

http://repo.cat-v.org/troff-slider/

all editing was done with ed, of course :-)

the slides and examples are available on my website
http://marmaro.de/docs and on

http://ulm.ccc.de/ChaosSeminar/2009/10_Softwareschaetze

2009-10-12

