
Old Software Treasuries

markus schnalke <meillo@marmaro.de>

this talk

• show the historical background

• introduce, explain and demonstrate ed , sed , awk

• solve real life problems

please interrupt me at any time in case of questions

please tell me what I should demonstrate

goal: motivate you to learn and use these programs

old software treasuries

• older than I am

• standardized

• various implementations

• freely available

• good software

origin

• classic Unix tools

• from Bell Labs

• representations of the Unix Philosophy

historical background

1968:

• MULTICS fails

• the last people working on it were Thompson, Ritchie,

McIlroy, Ossanna

1969:

• they still think about operating systems

• pushing idea: a file system (mainly Thompson)

• in search for hardware: a rarely used PDP-7

historical background

1970:

• Kernighan suggests ‘‘Unix’’

• deal: a PDP-11 for a document preparation system

1973:

• rewrite of Unix in C

1974:

• first publication

computer hardware back then

• computers are as large as closets

• users work on terminals

• terminals are: a keyboard and a line printer

• line printers have a speed of 10–15 chars/s

<picture of PDP-11>

impact on software

• don’t waste characters

• be quiet

• nothing like ‘‘screen-orientation’’

ed

ed

• by Ken Thompson in early 70s, based on qed

• the Unix text editor

• the standard text editor!

• Unix was written with ed

• first implementation of Regular Expressions

ed: old-fashioned

• already old-fashioned in 1984

• ‘‘So why are we spending time on such a old-fashioned

program?’’

• ‘‘Although many readers will prefer some other editor for

daily use, ed is universally available, efficient and effec-

tive.’’

ed: reasons

• the standard (text editor)

• available as /bin/ed

• line oriented → works on any terminal

• needs few bandwidth

• good for automated editing (scripts)

• good for presentations (?)

it’s not so much about using it, but about knowing it

ed: overview

• usage: ed [-s] [file]

• commands: [a1[,a2]] cmd [params]

• default addresses, default params

• success → no feedback

• problems → ‘‘?’’

• about 30 commands, half of them important

ed: commands

i insert p print

a append n print with line number

c change l list characters

d delete e edit file

m move w write file

t transfer (copy) q quit

s substitute

u undo

g global command

ed: addresses

4 4th line

$ last line

. current line

+ next line (.+1)

-- the same as .-2

/RE/ next line matching RE

?RE? previous line matching RE

1,$ all lines

-,/foo/ from previous line to next /foo/

<ed demo>

ed: derived software

ed ex vi

grep

sed sed

sed

• by Lee McMahon in 1973

• ‘‘stream editor’’

• started as a one-night hack on ed (AFAIR)

• makes ed suitable for pipeline processing

• irony: today, people use sed -i for in-place editing

sed: differences to ed

• line processing cycle

• no forward/backward references

• hold space (g,G,h,H,x)

• labels and branches

• bad i and a syntax

<sed demo> awk

awk

• by Aho, Weinberger, Kernighan

• oawk in 1977, nawk in 1985

• name is abbreviation of surnames (but also ‘‘awkward’’)

• the second scripting language on Unix (besides sh)

• ‘‘ sed meets C’’

awk: purpose

• for text processing

• avoids complex constructs in sh

• floating point arithmetic

awk: usage

• awk ’commands’ <in >out

• awk -f cmdfile <in >out

• program flow like in sed

• input automatically split in records and fields

• program is a list of blocks: cond { commands }

awk: features

• variables, assoc arrays

• functions

• pattern matching (EREs)

• dynamic typing

• more high-level: no pointers

awk: statements

much like C

• if , but no switch-case

• while , do-while

• for (;;) {} like in C

• for (i in array) {} foreach

• break , continue , exit , return

• print and printf are statements! redirection possi-

ble with >, >>, |

awk: functions

arithmetic much like in C

I/O getline(), system()

string sub(), gsub()

substr(), index(), match(),

split(), sprintf()

tolower(), toupper(),

length(), int()

awk: variables

RS, FS record/field separator

NR number of current record

NF number of fields ($1 ... $NF)

ARGC, ARGV like in C

FILENAME name of current input file

OFMT output format for numbers

ORS, OFS output record/field separator

SUBSEP a[1,2] equals a[1 SUBSEP 2]

awk: conditions

examples:

• NR == 1 {...}

• NR == 1, NR == 5 {...}

• /RE/ {...}

• $1 == "string" {...}

• $1 ˜ /RE/ {...}

• BEGIN {...}

• END {...}

<awk demo> real life e xamples

literature

• ‘‘The Unix Programming En vironment ’’ by Kernighan

and Pike is highly recommended to support this talk

• it’s one of my favorite computer books

• you really should read it!

• ‘‘SED & AWK g e-packt ’’ by Stephan Thesing

• if you want a german book about sed and awk then get

this one

• you can get it for about 3 Euro

this talk was prepared using tools of the Heirloom project:

http://heirloom.sf.net

the slides macros were taken from

http://repo.cat-v.org/troff-slider/

all editing was done with ed , of course :-)

the slides and examples are available on my website

http://marmaro.de/docs and on

http://ulm.ccc.de/ChaosSeminar/2009/10_Softwareschaetze

2009-10-12

